7 research outputs found

    Discovery of stress biomarkers in biological matrices using novel sample collection techniques Inorganic and Organic Mass Spectrometry

    Get PDF
    New methodologies for the collection and analysis of biological samples from psychological, physical and emotional stress are described. Currently, there is little research relating to the elemental, VOC and small molecule changes in biological samples as a consequence of stress on the human body, with much of the current research indicating physical symptoms. This research sought to measure chemical changes in three different categories of stress. The first uses an existing PASAT intervention to induce psychological stress and a further two new methodologies using exercise to induce physical stress and a trapped human in a simulation of a collapsed building to induce emotion stress. Psychological, physical and emotional stress elemental profiles are compared against their respective chemical baseline profiles. Skin samples are collected from the foreheads of participants who endured emotional stress while drool saliva, urine, plasma and forehead skin samples were obtained from physically stressed participants. Furthermore, drool saliva is also obtained from the individual who experienced emotional stress. [Continues.

    Development of a single base extension method to resolve Y chromosome haplogroups in sub-Saharan African populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of the Y chromosome to retain a record of its evolution has seen it become an essential tool of molecular anthropology. In the last few years, however, it has also found use in forensic genetics, providing information on the geographic origin of individuals. This has been aided by the development of efficient screening methods and an increased knowledge of geographic distribution. In this study, we describe the development of single base extension assays used to resolve 61 Y chromosome haplogroups, mainly within haplogroups A, B and E, found in Africa.</p> <p>Results</p> <p>Seven multiplex assays, which incorporated 60 Y chromosome markers, were developed. These resolved Y chromosomes to 61 terminal branches of the major African haplogroups A, B and E, while also including a few Eurasian haplogroups found occasionally in African males. Following its validation, the assays were used to screen 683 individuals from Southern Africa, including south eastern Bantu speakers (BAN), Khoe-San (KS) and South African Whites (SAW). Of the 61 haplogroups that the assays collectively resolved, 26 were found in the 683 samples. While haplogroup sharing was common between the BAN and KS, the frequencies of these haplogroups varied appreciably. Both groups showed low levels of assimilation of Eurasian haplogroups and only two individuals in the SAW clearly had Y chromosomes of African ancestry.</p> <p>Conclusions</p> <p>The use of these single base extension assays in screening increased haplogroup resolution and sampling throughput, while saving time and DNA. Their use, together with the screening of short tandem repeat markers would considerably improve resolution, thus refining the geographic ancestry of individuals.</p

    The effect of a paced auditory serial addition test (PASAT) intervention on the profile of volatile organic compounds in human breath: a pilot study

    Get PDF
    This study sought to identify if detectable changes in human breath profiles may be observed following a psychological intervention designed to induce stress, a paced auditory serial addition test (PASAT). Breath samples were collected from 22 participants (10 male and 12 female) following a double cross-over randomized design with two experimental interventions. One intervention required participants to listen to classical music chosen to be neutral. The other intervention required participants to undertake a PASAT that induced cardiovascular responses consistent with acute stress. Both interventions also involved two sequences of cognitive function tests. Blood-pressure and heart-rate were recorded throughout each intervention and distal breath samples were collected onto TenaxÂŽ TA/Carbograph 1 thermal desorption tubes, using an adaptive breath sampler. Samples were collected before and after the PASAT. Breath samples were analysed by thermal desorption gas chromatography-mass spectrometry. Data registration using retention indexing and peak deconvolution followed by partial least-squares discriminant analysis identified six stress sensitive compounds. A principal components analysis model based on these components generated a model that predicted post-PASAT versus post-neutral intervention samples with a sensitivity of 83.3% and a selectivity of 91.6% for females, compared to 100% sensitivity and 90% selectivity for males. Of the six compounds indole, 2-hydroxy-1-phenylethanone, benzaldehyde, and 2-ethylhexan-1-ol were identified on the basis of mass spectral, retention indexing and confirmation against pure standards. 2-methylpentadecane was tentatively identified from mass spectral and retention indexing, whilst one component has yet to be assigned, although the mass spectrum is indicative of a terpene. Indole and 2-methylpentadecane concentrations increased in response to the PASAT intervention, while the other compounds reduced in their abundance in human breath, possibly as a result of ventilation effects

    Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography-ion mobility-mass spectrometry

    Get PDF
    A method has been developed for metabolite profiling of the salivary metabolome based on protein precipitation and ultra-high performance liquid chromatography coupled with ion mobility-mass spectrometry (UHPLC–IM–MS). The developed method requires 0.5 mL of human saliva, which is easily obtainable by passive drool. Standard protocols have been established for the collection, storage and pre-treatment of saliva. The use of UHPLC allows rapid global metabolic profiling for biomarker discovery with a cycle time of 15 min. Mass spectrometry imparts the ability to analyse a diverse number of species reproducibly over a wide dynamic range, which is essential for profiling of biofluids. The combination of UHPLC with IM–MS provides an added dimension enabling complex metabolic samples to be separated on the basis of retention time, ion mobility and mass-to-charge ratio in a single chromatographic run. The developed method has been applied to targeted metabolite identification and untargeted metabolite profiling of saliva samples collected before and after exercise-induced physiological stress. δ-Valerolactam has been identified as a potential biomarker on the basis of retention time, MS/MS spectrum and ion mobility drift time

    Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry

    No full text
    This paper was accepted for publication in the journal, Metabolomics. The final publication is available at Springer via http://dx.doi.org/10.1007/s11306-013-0541-xA method has been developed for metabolite profiling of the salivary metabolome based on protein precipitation and ultra-high performance liquid chromatography coupled with ion mobility-mass spectrometry (UHPLC–IM–MS). The developed method requires 0.5 mL of human saliva, which is easily obtainable by passive drool. Standard protocols have been established for the collection, storage and pre-treatment of saliva. The use of UHPLC allows rapid global metabolic profiling for biomarker discovery with a cycle time of 15 min. Mass spectrometry imparts the ability to analyse a diverse number of species reproducibly over a wide dynamic range, which is essential for profiling of biofluids. The combination of UHPLC with IM–MS provides an added dimension enabling complex metabolic samples to be separated on the basis of retention time, ion mobility and mass-to-charge ratio in a single chromatographic run. The developed method has been applied to targeted metabolite identification and untargeted metabolite profiling of saliva samples collected before and after exercise-induced physiological stress. δ-Valerolactam has been identified as a potential biomarker on the basis of retention time, MS/MS spectrum and ion mobility drift time
    corecore